Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Li-Xue Zhang, ${ }^{\text {a }}$ An-Jiang Zhang, ${ }^{\text {a }}$ Xin-Xiang Lei, ${ }^{\text {a }}$ Kai-Huang Zou ${ }^{\text {a }}$ and Seik Weng $\mathbf{N g}^{\text {a, }}{ }^{\text {b }}$

${ }^{\mathrm{a}}$ School of Chemistry and Materials Science, Wenzhou Normal College, Wenzhou 325027, People's Republic of China, and ${ }^{\text {b }}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.047$
$w R$ factor $=0.095$
Data-to-parameter ratio $=6.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

4-Amino-3-(1,2,3,4,5-pentahydroxypentyl)-1,2,4-1 H -triazole-5(4H)-thione

In the title compound, $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}$, the 5-mercapto substituent of the 1,2,4-triazole exists in the thione form [$\mathrm{C}=S=$ 1.666 (5) Å], with the protonated N atom of the triazolyl ring, the amine group and the hydroxy groups of the pentyl chain engaged in extensive hydrogen-bonding interactions, giving rise to a three-dimensional network structure.

Comment

The 3 -substituted 4-amino-1,2,4-triazole-5-thione class of heterocycles, as represented by the methyl homolog, are heterocyclic compounds that can chelate to metal atoms through amine and double-bonded S atoms (Sen et al., 1996). These compounds possess useful anti-inflammatory and antimicrobial properties. The number of crystallographically verified compounds is, however, small, and these include the methyl (Escobar-Valderrama et al., 1989), trifluoromethyl (Menzies \& Squattrito, 2001), ethyl (Kajdan et al., 2000), propyl (McCarrick et al., 2000) and 2-pyridyl (Dallavalle et al., 2002) derivatives.

(I)

The present D-gluco (1,2,3,4,5-pentahydroxylpentyl) derivative (Fig. 1) is a chiral compound, the chirality arising from the starting reagent. The bond dimensions of the triazolyl ring and the $\mathrm{C}=\mathrm{S}$ bond are similar to those found in the reported derivatives. The $\mathrm{C}=\mathrm{S}$ bond $[1.668$ (5) \AA] is comparable to those $[1.678$ (2) and 1.686 (2) \AA] in two Schiff base derivatives of 4-amino-3-propyl-1,2,4-triazol-5-thione (McCarrick et al., 1999), as well as that $[1.653$ (3) \AA] in the Schiff base derivative of 4-amino-3-methyl-1,2,4-triazol-5-thione (Liu et al., 1999). The bond distance is, however, shorter than the $\mathrm{C}-\mathrm{S}$ bond [1.681 (2) A] in mesionic triphenyltriazoliumthiolate (Cheung et al., 1993). Arising from the hydroxy groups in the substituent, the hydrogen bonds (Table 2) consolidate the structure into a tightly held three-dimensional network.

Experimental

Carbon disulfide ($13 \mathrm{ml}, 0.22 \mathrm{~mol}$) was dropped into 85% hydrazine hydrate ($24 \mathrm{ml}, 0.40 \mathrm{~mol}$) and water (75 ml). The mixture was refluxed for 1 h and then cooled in an ice bath. The solid product that separated was collected and washed with ethanol and then with diethyl ether. The thiocarbohydrazide was purified by recrystalliza-

Received 1 March 2004

Accepted 11 March 2004 Online 24 March 2004
tion from water to which several drops of hydrochloric acid were added (m.p. 442-445 K). This compound (5 mmol) and d-gluconolactone in pyridine were refluxed for 4 h . The product was recrystallized three times from 20% aqueous ethanol, affording the pure title compound [m.p. $473-475 \mathrm{~K}$; literature m.p. $473-474 \mathrm{~K}$ (Awad \& El Ashry, 1999)] in about 80% yield. Analysis calculated for $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}: \mathrm{C} 31.57$, H 5.30, N 21.04%; found: C 31.36, H $5.25, \mathrm{~N}$ 20.87%. ${ }^{1} \mathrm{H}$ NMR (p.p.m.): $13.52(s, 1 \mathrm{H}, \mathrm{NH}), 5.49\left(s, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 5.04-$ $4.20(m, 5 \mathrm{H}, \mathrm{OH}), 3.55-3.10(m, 8 \mathrm{H}, \mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR (p.p.m.): 165.84, $152.15,71.43,70.90,70.56,66.36,63.51$. This method is a general method for the preparation of nucleotides of 1,2,4-triazoles (El Ashry et al., 2000).

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}$
$M_{r}=266.28$
Triclinic, $P 1$
$a=4.875$ (1) A
$b=5.306(2) \AA$
$c=10.669(3) \AA$
$\alpha=101.486$ (4) ${ }^{\circ}$
$\beta=92.884(4)^{\circ}$
$\gamma=90.339(4)^{\circ}$
$V=270.1(1) \AA^{3}$

$$
\begin{aligned}
& Z=1 \\
& D_{x}=1.637 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 582 \\
& \quad \text { reflections } \\
& \theta=3.9-24.5^{\circ} \\
& \mu=0.32 \mathrm{~mm}^{-1} \\
& T=298(2) \mathrm{K} \\
& \text { Plate, colorless } \\
& 0.42 \times 0.35 \times 0.06 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker APEX area-detector diffractometer
φ and ω scans
Absorption correction: none
1583 measured reflections
1285 independent reflections

> 1002 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.024$
> $\theta_{\max }=26.2^{\circ}$
> $h=-6 \rightarrow 5$
> $k=-4 \rightarrow 6$
> $l=-13 \rightarrow 13$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.095$
$S=1.00$
1062 reflections
160 parameters

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0455 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.23 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.24 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{C} 3$	$1.421(5)$	$\mathrm{N} 3-\mathrm{C} 1$	$1.360(6)$
$\mathrm{O} 2-\mathrm{C} 4$	$1.434(6)$	$\mathrm{N} 3-\mathrm{C} 2$	$1.362(6)$
$\mathrm{O} 3-\mathrm{C} 5$	$1.429(6)$	$\mathrm{N} 3-\mathrm{N} 4$	$1.399(6)$
$\mathrm{O} 4-\mathrm{C} 6$	$1.430(6)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.512(7)$
$\mathrm{O} 3-\mathrm{C} 7$	$1.433(6)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.535(7)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.295(6)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.519(7)$
N1-N2	$1.387(5)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.526(6)$
N2-C1	$1.336(7)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.505(8)$
C2-N1-N2	$103.2(4)$	$\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 4$	$106.6(4)$
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{N} 1$	$113.5(4)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$114.8(4)$
$\mathrm{C} 1-\mathrm{N} 3-\mathrm{C} 2$	$109.1(4)$	$\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 5$	$110.6(4)$
$\mathrm{C} 1-\mathrm{N} 3-\mathrm{N} 4$	$125.9(4)$	$\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 3$	$107.0(4)$
$\mathrm{C} 2-\mathrm{N} 3-\mathrm{N} 4$	$125.1(4)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$114.0(4)$
N2-C1-N3	$102.9(4)$	$\mathrm{O} 3-\mathrm{C} 5-\mathrm{C} 4$	$110.3(4)$
N2-C1-S1	$129.1(4)$	$\mathrm{O} 3-\mathrm{C} 5-\mathrm{C} 6$	$106.8(4)$
N3-C1-S1	$128.0(4)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$111.6(4)$
N1-C2-N3	$111.3(4)$	$\mathrm{O} 4-\mathrm{C} 6-\mathrm{C} 7$	$109.1(4)$
N1-C2-C3	$125.9(4)$	$\mathrm{O} 4-\mathrm{C} 6-\mathrm{C} 5$	$106.6(4)$
N3-C2-C3	$122.7(4)$	$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5$	$113.5(4)$
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 2$	$109.7(4)$	$\mathrm{O} 5-\mathrm{C} 7-\mathrm{C} 6$	$113.8(4)$

Figure 1
A view of (I), with displacement ellipsoids at the 50% probability level. H atoms are drawn as spheres of arbitrary radii.

Table 2
Hydrogen-bonding geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \mathrm{O} \cdots \mathrm{N} 4$	0.82	2.12	2.778 (6)	138
$\mathrm{O} 2-\mathrm{H} 2 \mathrm{O} \cdots \mathrm{O}^{\text {i }}$	0.82	2.13	2.824 (5)	143
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{O} \cdots \mathrm{O}^{\text {ii }}$	0.82	1.96	2.777 (5)	179
$\mathrm{O} 4-\mathrm{H} 4 \mathrm{O} \cdots 5^{\text {iii }}$	0.82	1.94	2.755 (5)	174
$\mathrm{O} 5-\mathrm{H} 5 \mathrm{O} \cdots \mathrm{O}^{\text {iv }}$	0.82	2.07	2.827 (5)	154
$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1^{v}$	0.86	1.98	2.784 (5)	156
$\mathrm{N} 4-\mathrm{H} 4 \mathrm{C} \cdots \mathrm{O}^{\text {vi }}$	0.89	2.33	3.147 (6)	153
$\mathrm{N} 4-\mathrm{H} 4 A \cdots \mathrm{~S} 1^{\text {i }}$	0.89	2.72	3.574 (5)	161

Symmetry codes: (i) $x, y-1, z$; (ii) $1+x, y, z$; (iii) $x-1, y, z$; (iv) $x, 1+y, z$; (v) $1+x, 1+y, z ;$ (vi) $x, y, 1+z$.

H atoms attached to C, N and O atoms were located in a difference Fourier map, but they were included in the refinement in calculated positions in the riding-model approximation $[\mathrm{C}-\mathrm{H}=0.98 \AA$ (methine), $\mathrm{C}-\mathrm{H}=0.97 \AA$ (methylene), $\mathrm{N}-\mathrm{H}=0.86 \AA$ (azolyl), $\mathrm{N}-$ $\mathrm{H}=0.89 \AA$ (amino) and $\mathrm{O}-\mathrm{H}=0.82 \AA$ (hydoxy)], with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}$ (parent atom). Despite the presence of a sulfur atom in the molecule, refinement of the absolute configuration was unsuccessful, the Flack (1983) parameter having an intermediate value with large uncertainty. The correct configuration is known from the starting material and was assumed, and Friedel pairs were merged.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

References

Awad, L. F. \& El Ashry, E. S. H. (1999). Nucleosides Nucleotides, 18, 557-558. Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Winsonsin, USA.
Cheung, K.-K., Echevaria, A., Galembeck, S., Maciel, M. A. M., Miller, J., Rumjanek, V. M. \& Simas, A. M. (1993). Acta Cryst. C49, 1092-1094.
Dallavalle, F., Gaccioli, F., Franchi-Gazzola, R. \& Lanfranchi, M. (2002). J. Inorg. Biochem. 92, 95-104.
El Ashry, E. S. H., Awad, L. F. \& Winkler, M. (2000). J. Chem. Soc. Perkin Trans. 1, pp. 829-834.
Escobar-Valderrama, J. L., Garcia-Tapia, J. H., Ramirez-Ortiz, J., Rosales, M. J., Toscano, R. A. \& Valdes-Martinez, J. (1989). Can. J. Chem. 67, 198201.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kajdan, T. W., Squattrito, P. J. \& Dubey, S. (2000). Inorg. Chim. Acta, 300, 1082-1089.
Liu, Y.-F., Chantrapromma, S., Raj, S. S. S., Fun, H.-K., Zhang, Y.-H., Xie, F.-X., Tian, Y.-P. \& Ni, S. S. (1999). Acta Cryst. C55, 93-94.

organic papers

McCarrick, R. M., Eltzroth, M. J. \& Squattrito, P. J. (2000). Inorg. Chim. Acta, 311, 95-105.
McCarrick, R. M., Squattrito, P. J., Singh, R. N., Handa, R. N. \& Dubey, S. N. (1999). Acta Cryst. C55, 2111-2114.

Menzies, C. M. \& Squattrito, P. J. (2001). Inorg. Chim. Acta, 314, 194-200. Sen, A. K., Dubey, S. N. \& Squattrito, P. J. (1996). Acta Cryst. C52, 865-868. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

